The Kubernetes scheduler chooses a node for a Pod by evaluating scheduling constraints and cluster state. Key inputs include resource requests (CPU/memory), taints/tolerations, and affinity/anti-affinity rules. Option A directly names three real, high-impact scheduling factors—Pod memory requests, node taints, and Pod affinity—so A is correct.
Resource requests are fundamental: the scheduler must ensure the target node has enough allocatable CPU/memory to satisfy the Pod’s requests. Requests (not limits) drive placement decisions. Taints on nodes repel Pods unless the Pod has a matching toleration, which is commonly used to reserve nodes for special workloads (GPU nodes, system nodes, restricted nodes) or to protect nodes under certain conditions. Affinity and anti-affinity allow expressing “place me near” or “place me away” rules—e.g., keep replicas spread across failure domains or co-locate components for latency.
Option B includes labels, which do matter, but “request labels” is not a standard scheduler concept; labels influence scheduling mainly through selectors and affinity, not as a direct category called “request labels.” Option C mixes a real concept (taints, priority) with “node level,” which isn’t a standard scheduling factor term. Option D includes “container command,” which does not influence scheduling; the scheduler does not care what command the container runs, only placement constraints and resources.
Under the hood, kube-scheduler uses a two-phase process (filtering then scoring) to select a node, but the inputs it filters/scores include exactly the kinds of constraints in A. Therefore, the verified best answer is A.
=========