kube-proxyis a node-level networking component that helps implement the KubernetesServiceabstraction. Services provide a stable virtual IP and DNS name that route traffic to a set of Pods (endpoints). kube-proxy watches the API for Service and EndpointSlice/Endpoints changes and then programs the node’s networking rules so that traffic sent to a Service is forwarded (load-balanced) to one of the correct backend Pod IPs. This is whyBis correct.
Conceptually, kube-proxy turns the declarative Service configuration into concrete dataplane behavior. Depending on the mode, it may use iptables rules, IPVS, or integrate with eBPF-capable networking stacks (sometimes kube-proxy is replaced or bypassed by CNI implementations, but the classic kube-proxy role remains the canonical answer). In iptables mode, kube-proxy creates NAT rules that rewrite traffic from the Service virtual IP to one of the Pod endpoints. In IPVS mode, it programs kernel load-balancing tables for more scalable service routing. In all cases, the job is to connect “Service IP/port” to “Pod IP/port endpoints.”
Option A is incorrect becauseIngressis a separate API resource and requires anIngress Controller(like NGINX Ingress, HAProxy, Traefik, etc.) to implement HTTP routing, TLS termination, and host/path rules. kube-proxy is not an Ingress controller. Option C is incorrect because general node egress management is not kube-proxy’s responsibility; egress behavior typically depends on the CNI plugin, NAT configuration, and network policies. Option D is incorrect because API access control is handled by the API server’s authentication/authorization layers (RBAC, webhooks, etc.), not kube-proxy.
So kube-proxy’s essential function is: keep node networking rules in sync so thatService traffic reaches the right Pods. It is one of the key components that makes Services “just work” across nodes without clients needing to know individual Pod IPs.
=========