Winter Special Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: vce65

Case studyAn ML engineer is developing a fraud detection model on AWS.

Case study

An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.

The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.

Before the ML engineer trains the model, the ML engineer must resolve the issue of the imbalanced data.

Which solution will meet this requirement with the LEAST operational effort?

A.

Use Amazon Athena to identify patterns that contribute to the imbalance. Adjust the dataset accordingly.

B.

Use Amazon SageMaker Studio Classic built-in algorithms to process the imbalanced dataset.

C.

Use AWS Glue DataBrew built-in features to oversample the minority class.

D.

Use the Amazon SageMaker Data Wrangler balance data operation to oversample the minority class.

Amazon Web Services MLA-C01 Summary

  • Vendor: Amazon Web Services
  • Product: MLA-C01
  • Update on: Feb 3, 2026
  • Questions: 207
Price: $52.5  $149.99
Buy Now MLA-C01 PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method