Winter Special Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: vce65

Case studyAn ML engineer is developing a fraud detection model on AWS.

Case study

An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.

The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.

The training dataset includes categorical data and numerical data. The ML engineer must prepare the training dataset to maximize the accuracy of the model.

Which action will meet this requirement with the LEAST operational overhead?

A.

Use AWS Glue to transform the categorical data into numerical data.

B.

Use AWS Glue to transform the numerical data into categorical data.

C.

Use Amazon SageMaker Data Wrangler to transform the categorical data into numerical data.

D.

Use Amazon SageMaker Data Wrangler to transform the numerical data into categorical data.

Amazon Web Services MLA-C01 Summary

  • Vendor: Amazon Web Services
  • Product: MLA-C01
  • Update on: Feb 3, 2026
  • Questions: 207
Price: $52.5  $149.99
Buy Now MLA-C01 PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method