Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmasmnth

You are building a linear model with over 100 input features, all with values between...

You are building a linear model with over 100 input features, all with values between -1 and 1. You suspect that many features are non-informative. You want to remove the non-informative features from your model while keeping the informative ones in their original form. Which technique should you use?

A.

Use Principal Component Analysis to eliminate the least informative features.

B.

Use L1 regularization to reduce the coefficients of uninformative features to 0.

C.

After building your model, use Shapley values to determine which features are the most informative.

D.

Use an iterative dropout technique to identify which features do not degrade the model when removed.

Google Professional-Machine-Learning-Engineer Summary

  • Vendor: Google
  • Product: Professional-Machine-Learning-Engineer
  • Update on: Jul 30, 2025
  • Questions: 285
Price: $52.5  $149.99
Buy Now Professional-Machine-Learning-Engineer PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method