Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmasmnth

You are developing a custom TensorFlow classification model based on tabular data.

You are developing a custom TensorFlow classification model based on tabular data. Your raw data is stored in BigQuery contains hundreds of millions of rows, and includes both categorical and numerical features. You need to use a MaxMin scaler on some numerical features, and apply a one-hot encoding to some categorical features such as SKU names. Your model will be trained over multiple epochs. You want to minimize the effort and cost of your solution. What should you do?

A.

1 Write a SQL query to create a separate lookup table to scale the numerical features.

2. Deploy a TensorFlow-based model from Hugging Face to BigQuery to encode the text features.

3. Feed the resulting BigQuery view into Vertex Al Training.

B.

1 Use BigQuery to scale the numerical features.

2. Feed the features into Vertex Al Training.

3 Allow TensorFlow to perform the one-hot text encoding.

C.

1 Use TFX components with Dataflow to encode the text features and scale the numerical features.

2 Export results to Cloud Storage as TFRecords.

3 Feed the data into Vertex Al Training.

D.

1 Write a SQL query to create a separate lookup table to scale the numerical features.

2 Perform the one-hot text encoding in BigQuery.

3. Feed the resulting BigQuery view into Vertex Al Training.

Google Professional-Machine-Learning-Engineer Summary

  • Vendor: Google
  • Product: Professional-Machine-Learning-Engineer
  • Update on: Jul 30, 2025
  • Questions: 285
Price: $52.5  $149.99
Buy Now Professional-Machine-Learning-Engineer PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method