Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmasmnth

You have built a model that is trained on data stored in Parquet files.

You have built a model that is trained on data stored in Parquet files. You access the data through a Hive table hosted on Google Cloud. You preprocessed these data with PySpark and exported it as a CSV file into Cloud Storage. After preprocessing, you execute additional steps to train and evaluate your model. You want to parametrize this model training in Kubeflow Pipelines. What should you do?

A.

Remove the data transformation step from your pipeline.

B.

Containerize the PySpark transformation step, and add it to your pipeline.

C.

Add a ContainerOp to your pipeline that spins a Dataproc cluster, runs a transformation, and then saves the transformed data in Cloud Storage.

D.

Deploy Apache Spark at a separate node pool in a Google Kubernetes Engine cluster. Add a ContainerOp to your pipeline that invokes a corresponding transformation job for this Spark instance.

Google Professional-Machine-Learning-Engineer Summary

  • Vendor: Google
  • Product: Professional-Machine-Learning-Engineer
  • Update on: Jul 30, 2025
  • Questions: 285
Price: $52.5  $149.99
Buy Now Professional-Machine-Learning-Engineer PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method