Summer Special Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: vce65

You recently trained an XGBoost model on tabular data You plan to expose the model...

You recently trained an XGBoost model on tabular data You plan to expose the model for internal use as an HTTP microservice After deployment you expect a small number of incoming requests. You want to productionize the model with the least amount of effort and latency. What should you do?

A.

Deploy the model to BigQuery ML by using CREATE model with the BOOSTED-THREE-REGRESSOR statement and invoke the BigQuery API from the microservice.

B.

Build a Flask-based app Package the app in a custom container on Vertex Al and deploy it to Vertex Al Endpoints.

C.

Build a Flask-based app Package the app in a Docker image and deploy it to Google Kubernetes Engine in Autopilot mode.

D.

Use a prebuilt XGBoost Vertex container to create a model and deploy it to Vertex Al Endpoints.

Google Professional-Machine-Learning-Engineer Summary

  • Vendor: Google
  • Product: Professional-Machine-Learning-Engineer
  • Update on: Jul 30, 2025
  • Questions: 285
Price: $52.5  $149.99
Buy Now Professional-Machine-Learning-Engineer PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method