Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmasmnth

You work for a rapidly growing social media company.

You work for a rapidly growing social media company. Your team builds TensorFlow recommender models in an on-premises CPU cluster. The data contains billions of historical user events and 100 000 categorical features. You notice that as the data increases the model training time increases. You plan to move the models to Google Cloud You want to use the most scalable approach that also minimizes training time. What should you do?

A.

Deploy the training jobs by using TPU VMs with TPUv3 Pod slices, and use the TPUEmbedding API.

B.

Deploy the training jobs in an autoscaling Google Kubernetes Engine cluster with CPUs

C.

Deploy a matrix factorization model training job by using BigQuery ML.

D.

Deploy the training jobs by using Compute Engine instances with A100 GPUs and use the

t f. nn. embedding_lookup API.

Google Professional-Machine-Learning-Engineer Summary

  • Vendor: Google
  • Product: Professional-Machine-Learning-Engineer
  • Update on: Jul 30, 2025
  • Questions: 285
Price: $52.5  $149.99
Buy Now Professional-Machine-Learning-Engineer PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method