WEP uses a small range Initialization Vector (IV) is the factor that contributes to the weakness of Wired Equivalent Privacy (WEP) protocol. WEP is a security protocol that provides encryption and authentication for wireless networks, such as Wi-Fi. WEP uses the RC4 stream cipher to encrypt the data packets, and the CRC-32 checksum to verify the data integrity. WEP also uses a shared secret key, which is concatenated with a 24-bit Initialization Vector (IV), to generate the keystream for the RC4 encryption. WEP has several weaknesses and vulnerabilities, such as:
WEP uses a small range Initialization Vector (IV), which results in 16,777,216 (2^24) possible values. This might seem large, but it is not enough for a high-volume wireless network, where the same IV can be reused frequently, creating keystream reuse and collisions. An attacker can capture and analyze the encrypted data packets that use the same IV, and recover the keystream and the secret key, using techniques such as the Fluhrer, Mantin, and Shamir (FMS) attack, or the KoreK attack.
WEP uses a weak integrity check, which is the CRC-32 checksum. The CRC-32 checksum is a linear function that can be easily computed and manipulated by anyone who knows the keystream. An attacker can modify the encrypted data packets and the checksum, without being detected, using techniques such as the bit-flipping attack, or the chop-chop attack.
WEP uses a static and shared secret key, which is manually configured and distributed among all the wireless devices that use the same network. The secret key is not changed or refreshed automatically, unless the administrator does it manually. This means that the secret key can be exposed or compromised over time, and that all the wireless devices can be affected by a single key breach. An attacker can also exploit the weak authentication mechanism of WEP, which is based on the secret key, and gain unauthorized access to the network, using techniques such as the authentication spoofing attack, or the shared key authentication attack.
WEP has been deprecated and replaced by more secure protocols, such as Wi-Fi Protected Access (WPA) or Wi-Fi Protected Access II (WPA2), which use stronger encryption and authentication methods, such as the Temporal Key Integrity Protocol (TKIP), the Advanced Encryption Standard (AES), or the Extensible Authentication Protocol (EAP).
The other options are not factors that contribute to the weakness of WEP, but rather factors that are irrelevant or incorrect. WEP does not use Message Digest 5 (MD5), which is a hash function that produces a 128-bit output from a variable-length input. WEP does not use Diffie-Hellman, which is a method for generating a shared secret key between two parties. WEP does use an Initialization Vector (IV), which is a 24-bit value that is concatenated with the secret key.