Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmasmnth

An aircraft engine manufacturing company is measuring 200 performance metrics in a time-series.

An aircraft engine manufacturing company is measuring 200 performance metrics in a time-series. Engineers

want to detect critical manufacturing defects in near-real time during testing. All of the data needs to be stored

for offline analysis.

What approach would be the MOST effective to perform near-real time defect detection?

A.

Use AWS IoT Analytics for ingestion, storage, and further analysis. Use Jupyter notebooks from withinAWS IoT Analytics to carry out analysis for anomalies.

B.

Use Amazon S3 for ingestion, storage, and further analysis. Use an Amazon EMR cluster to carry outApache Spark ML k-means clustering to determine anomalies.

C.

Use Amazon S3 for ingestion, storage, and further analysis. Use the Amazon SageMaker Random CutForest (RCF) algorithm to determine anomalies.

D.

Use Amazon Kinesis Data Firehose for ingestion and Amazon Kinesis Data Analytics Random Cut Forest(RCF) to perform anomaly detection. Use Kinesis Data Firehose to store data in Amazon S3 for furtheranalysis.

Amazon Web Services MLS-C01 Summary

  • Vendor: Amazon Web Services
  • Product: MLS-C01
  • Update on: Jul 28, 2025
  • Questions: 330
Price: $52.5  $149.99
Buy Now MLS-C01 PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method