Summer Special Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: vce65

A company needs to develop a model that uses a machine learning (ML) model for...

A company needs to develop a model that uses a machine learning (ML) model for risk analysis. An ML engineer needs to evaluate the contribution each feature of a training dataset makes to the prediction of the target variable before the ML engineer selects features.

How should the ML engineer predict the contribution of each feature?

A.

Use the Amazon SageMaker Data Wrangler multicollinearity measurement features and the principal component analysis (PCA) algorithm to calculate the variance of the dataset along multiple directions in the feature space.

B.

Use an Amazon SageMaker Data Wrangler quick model visualization to find feature importance scores that are between 0.5 and 1.

C.

Use the Amazon SageMaker Data Wrangler bias report to identify potential biases in the data related to feature engineering.

D.

Use an Amazon SageMaker Data Wrangler data flow to create and modify a data preparation pipeline. Manually add the feature scores.

Amazon Web Services MLS-C01 Summary

  • Vendor: Amazon Web Services
  • Product: MLS-C01
  • Update on: Jul 28, 2025
  • Questions: 330
Price: $52.5  $149.99
Buy Now MLS-C01 PDF + Testing Engine Pack

Payments We Accept

Your purchase with ExamsVCE is safe and fast. Your products will be available for immediate download after your payment has been received.
The ExamsVCE website is protected by 256-bit SSL from McAfee, the leader in online security.

examsvce payment method