To capture word context and sequential QA information, the embedding vectors need to consider both the order and the meaning of the words in the text.
Option B, Amazon SageMaker BlazingText algorithm in Skip-gram mode, is a valid option because it can learn word embeddings that capture the semantic similarity and syntactic relations between words based on their co-occurrence in a window of words. Skip-gram mode can also handle rare words better than continuous bag-of-words (CBOW) mode1.
Option E, combination of the Amazon SageMaker BlazingText algorithm in Batch Skip-gram mode with a custom recurrent neural network (RNN), is another valid option because it can leverage the advantages of Skip-gram mode and also use an RNN to model the sequential nature of the text. An RNN can capture the temporal dependencies and long-term dependencies between words, which are important for QA tasks2.
Option A, Amazon SageMaker seq2seq algorithm, is not a valid option because it is designed for sequence-to-sequence tasks such as machine translation, summarization, or chatbots. It does not produce embedding vectors for text series, but rather generates an output sequence given an input sequence3.
Option C, Amazon SageMaker Object2Vec algorithm, is not a valid option because it is designed for learning embeddings for pairs of objects, such as text-image, text-text, or image-image. It does not produce embedding vectors for text series, but rather learns a similarity function between pairs of objects4.
Option D, Amazon SageMaker BlazingText algorithm in continuous bag-of-words (CBOW) mode, is not a valid option because it does not capture word context as well as Skip-gram mode. CBOW mode predicts a word given its surrounding words, while Skip-gram mode predicts the surrounding words given a word. CBOW mode is faster and more suitable for frequent words, but Skip-gram mode can learn more meaningful embeddings for rare words1.
1: Amazon SageMaker BlazingText
2: Recurrent Neural Networks (RNNs)
3: Amazon SageMaker Seq2Seq
4: Amazon SageMaker Object2Vec